UNTERSUCHUNGEN GEOPHYSIKALISCHER PARAMETER

IM ZUSAMMENHANG MIT ERDBEBEN IN KÄRNTEN UND FRIAUL

Investigations of Geophysical Parameters Concerning Earthquakes
in Carinthia and Friuli

Kay ARIC, Gerald DUMA, Harry FRIEDMANN, Rudolf GUTDEUTSCH und Friedrich HERNEGGER

Zusammenfassung: Das Friauler Erdbeben im Jahre 1976 und die danach anhaltende Bebentätigkeit gaben den Anlaß, un Zusammenhănge zwischen lokalem Spannungsfeld der Erdkruste und verschiedenen physikalisch meßbaren Größen zu analysieren. Es konnte eine Beziehung zwischen der Seismizität und der Bergschlagtătigkeit im Erzbergwerk der Bleiberger Bergwerks Union festgestellt werden. Der Radongehalt der untersuchten Quelle hängt von den Niederschlägen ab. Beschränkt man sich auf einen Zeitraum, in dem dieser Einfluß vemachlässigbar ist, so bleiben gewisse Effekte in den Radonschwankungen Ubrig, die einen Gleichlauf mit der Erdbebentätigkeit zeigen. Ein ursächlicher Zusammenhang zwischen den Gezeiten und dem Radongehalt ist derzeit noch nicht nachweisbar.

Summary: In consequence of the Friuli earthquakes since 1976 geophysical investigations in the area of N -Italy / S-Austria (Carinthia) have been carried out. It was intended to analyse the relation between the local stress field of the earth's crust and several physical parameters. There is an evidence of a correlation between seismicity and rockbursts in the mine of the BBU. The radon content of the observed spring depends on the precipitation and the groundwater level. If the investigations are restricted to a period where these influences are neglectible the ime serie of the radon content exhibits certain similarities with the earthquake activity. The radon data do not support the assumption of an influence of the earth's tides on the radon content until now.

1. Einleitung

Nach Erdbebenkatastrophen in aller Welt hat die Öffentlichkeit in den letzten Jahren zunehmend die Frage an die Wissenschaft gestellt, ob eine physikalische Erdbebenprognose möglich ist. Obgleich man heute schon viel uber die Ursachen der Erdbeben weiß, ist man doch von einer zuverlässigen Prognose groBer Beben noch sehr weit entfernt. Zum gegenwärtigen Zeitpunkt gehört es daher zum vornehmlichen Ziel der Geowissenschaften, die Korrelation zwischen Erdbeben und anderen physikalischen Parametern zu uberprufen.

Durch die Katastrophenbeben in Friaul am 6. Mai 1976 sowie die darauffolgenden Nachbeben stehen nun auch in Mitteleuropa geeignete seismologische Daten zur Verfugung. Fir das Studium der Korrelation der Seismizitalt mit anderen geophysikalischen Parametern erwies sich dieses Bebengebiet aus mehreren Grïnden als besonders geeignet. In dem tektonisch beanspruchten Raum Villach befinden sich Brunnen und radonhaltige Warmwasser-Quellen, deren physikalische Parameter seit längerer Zeit kontrolliert werden. Das Bergbaugebiet der Bleiberger Bergwerks Union (BBU) ist nur 60 km vom Epizentrum entfernt. In seinen Gruben treten Bergschläge auf, die im Hinblick auf ihre möglichen wirtschaftlichen und sicherheitstechnischen Konsequenzen bereits in einschlägigen Fachkreisen untersucht werden.

Schließlich existiert in Kärnten ein seismisches Stationsnetz, welches in der Lage ist, neben diesen Bergschlägen auch Erdbeben zu registrieren. Aus allen genannten verschiedenartigen Quellen stehen zahlreiche Daten zur Verfugung, die nachfolgend bearbeitet werden.

2. Das Meßgebiet

Die Position der Nahbebenstation im Stefaniestollen der BBU, der Radon Meßstellen im Franz Josef Stollen sowie in Warmbad Villach sind in Abb. 1 und 2 dargestellt. Die Grundwassermeßstellen (12 Brunnen) befinden sich in der unmittelbaren Umgebung von Warmbad Villach. Die Brunnen liegen im Bereich des Wettersteinkalkes, der durch quartären Lehm, Schotter und Sandschichten uberlagert ist. Die seismische Station befindet sich am Ostende des Drauzuges. Der Drauzug ist ein mesozoischer Keil, der eine karbonatische Entwicklung durchgemacht hat und als ein autochtoner Gebirgskörper zu betrachten ist. Er ist im Norden durch die Drautal - Mölltal Störung und im Süden durch die Periadriatische Naht von den kristallinen Einheiten getrennt (HOLLER 1974, 1976). Der Bleiberg Bruch bildet eine Grenze zwischen Hauptdolomit und Wettersteindolomit und trennt als senkrecht stehende Störung das Dobratschmassiv vom Erzberg. Zahlreiche Querstörungen durchziehen das Bergbaugebiet und deuten auf eine starke rezente tektonische Beanspruchung hin (Abb. 2). Ebenso dürfte die geologisch-tektonische Stellung des Dobratschmassivs in der alpindinarischen Grenzzone (ANDERLE 1950) für die lokale Seismizităt von Bedeutung sein. Dafür spricht auch die rege Bergschlagtätigkeit im Erzbergwerk der BBU.

Auf Grund der Epizentrenverteilung in diesem Jahrhundert (Abb. 1) im Raume Südkärnten und der Periadriatischen Naht erscheint dieses Gebiet als seismisch mäßig aktiv (TOPERCZER und TRAPP 1950, TRAPP 1961 und 1973). Die historischen Beben in den Jahren 1348 und 1690 und die Friauler Bebenserien 1976 (ARIC et al. 1976, FIEGWEIL 1977, DRIMMEL et al. 1979) zeigen aber deutlich, daß dieses Gebiet auch von katastrophalen Ereignissen heimgesucht worden ist.

Abb. 1: Lageplan der Meßstellen, Hauptstörungslinien und geologischer Überblick, Epizentren ab 1901, Friaul Nachbeben ab 1976 sind nicht eingetragen.

Abb. 2: Bruchtektonische Skizze des Bergbaugebietes (nach HOLLER 1974 und 1976).
3. Untersuchungen von Nahbeben und lokalen seismischen Ereignissen seit 1976

Wegen der großen Zahl an registrierten Nachbeben in Friaul und lokalen Ereignissen im und um den Grubenbereich der BBU war es möglich, statistische Untersuchungen durchzufuhren. Die Nahbeben Station erlaubt im Frequenzbereich von 0.2 bis 20 Hz eine geschwindigkeitsproportionale Aufzeichnung. In diesem Frequenzbereich können Ereignisse $a b 1 \mu \mathrm{~m} / \mathrm{s}$ Schwinggeschwindigkeit registriert werden.

Der Dynamikbereich der Aufzeichnungen betrăgt ca. 40 dB . Um von der örtlichen Schwinggeschwindigkeit auf die Stärke des Bebens zu schließen, muß man aber ihre Abhăngigkeit von der Entfernung zum Herd kennen. In situ Messungen haben gezeigt, daß die Schwinggeschwindigkeit nach einem Gesetz $r^{-n}, n \cong 2$ mit der Entfernung r im Nahbereich (bis 4 km) abnimmt. BUBEN (1967) gibt nach Untersuchungen im Kladno $\mathrm{n}=1,2$ bis 1,4 an. Unter Berücksichtigung des Dynamikumfanges und der Empfindlichkeit der Apparatur darf angenommen werden, daß alle Ereignisse im Grubenbereich mit einer Magnitude $M_{L} \geq-1$, in Friaul mit $M_{L} \geq 2$ (siehe RICHTER 1958) registriert werden. Magnituden (M_{L}) wurden auch im Ruhrgebiet von CASTEN und CETE (1980) untersucht. Die im Stefaniestollen untergebrachte Station hat 47 m Überlagerung. Die Erstreckung des Bergbaureviers in $\mathrm{O}-\mathrm{W}$-Richtung beträgt etwa 10 km . Bergschlaggefährdete Gebiete sind im Bergwerk unterschiedlich verteilt.

Durch die Analyse der Aufzeichnungen vom 15. Mai 1976 bis 30. September 1979 konnten verschiedene Typen von Ereignissen festgestellt werden, die teilweise durch die Zeitdifferenz $t_{s}-t_{p}$ der registrierten S- und P-Wellen unterscheidbar sind:
A) durch menschliche Einwirkung hervorgerufenen Erschütterungen (Sprengungen, Abbau- und Bohrtätigkeit, die hăufig von Bergschlägen begleitet werden; $\mathrm{t}_{\mathrm{s}}-\mathrm{t}_{\mathrm{p}} \leq 1.3 \mathrm{~s}$)
B) Bergschlage im Grubenbereich, die tektonischer Natur sind (Laufzeitdifferenz wie unter A).
C) Nahbeben $1.3<t_{s}-t_{p} \leq 3,3 \mathrm{~s}$
D) Friaulbeben $3,3<\mathrm{t}_{\mathrm{s}}-\mathrm{t}_{\mathrm{p}} \leq 11,5 \mathrm{~s}$

BERGSCHLAG

Abb. 3: Seismogrammtypen der Station Bleiberg.

Abb. 4: Die tageszeitliche Haufigkeitsverteilung der Ereignisse des Typs A und B.

Die Seismogramm - Typen sind in Abb. 3 dargestellt. HURTIG et al. (1978) bezeichnet den Typ A als statischen Gebirgsschlag, der immer in einem direkten Zusammenhang mit dem von den aktiven bergbaulichen Maßnahmen betroffenen Gebirgsvolumina stehen muß und deshalb bezüglich der GröBenordnung der freigesetzten Energie begrenzt ist. Die tageszeitliche Häufigkeit der Ereignisse in Bleiberg ist in Abb. 4 dargestellt (Untersuchungszeitraum 3 Monate), wobei ein direkter Zusammenhang mit dem 8 -stündigen Rhythmus der Abbau- und Sprengarbeiten (Schichten) sichtbar wird. Auch WIERZCHOWSKA (1967) stellte im Steinkohlenrevier Gornystask (Polen) einen ahnlichen Zusammenhang fest. Ereignisse des Typs A wurden eliminiert. Die verbleibenden Bergschläge hatten Amplituden $A_{p} \geq 10 \mathrm{~mm}$ ($\geq 20 \mu \mathrm{~m} / \mathrm{s}$). Bei dem Typ B handelt es sich um tektonische Ereignisse in Grubenbereich, die nicht in unmittelbarem Zusammenhang mit dem Arbeitsablauf stehen. HURTIG et al. (1978) bezeichnet diesen Typ als dynamisch, wobei es sich um seismisch induzierte Brucherscheinungen im Bergbau handelt. Für solche Herde kommen potentielle Störungszonen und Bruchsysteme, die im Abschnitt uber das Meßgebiet erwähnt worden sind, in Frage. Handelt es sich bei den Nahbeben (C) um einen Mikrobebenbereich außerhalb des Bergbaugebietes, so ist anzunehmen, daß die Herde in einer Entfernung von $10-30 \mathrm{~km}$ süd- bis südwestlich der Station Bleiberg liegen, da sie weder in Klagenfurt (KFA, liegt 50 km östlich), noch in Kölnbreinsperre (Malta, liegt 45 km nordwestlich) registriert worden sind.

Für beide Gebirgsschlagtypen A und B dürften verschiedene Herdvorgänge gelten, obwohl sie ähnliche Seismogrammbilder ergeben. Für die Prognose von Gebirgsschlägen kommt es darauf an, Unterscheidungsmerkmale zu erkennen (KNOLL 1979, KNOLL et al. 1979).

Statistische Bearbeitungen von Bergschlägen, die sich im Bleiberger Revier in den Jahren 1900 1930 ereignet haben, sind von zahlreichen Autoren durchgeführt worden. TSCHERNK (1932 und 1958) beobachtete 512 Bergschläge, die er statistisch bearbeitete. Eine weitere statistische Bearbeitung umfaßt den Zeitraum von 1960 bis 1972 (KOSTELKA 1962). Durchschnittlich wurden 120 Bergschlige pro Jahr gezählt. Sie wurden in drei Typen, und zwar während, um und außerhalb der Schußzeit unterteilt, Zusätzlich wurden drei Wahrnehmungsbereiche festgestellt. Ca. zwei Drittel der Bergschläge liegen außerhalb der Schußzeiten (S̆IMÁNĔ et al. 1973). Dieses Ergebnis steht mit unseren Untersuchungen im Einklang. Viermonatige seismoakustische Untersuchungen in der Grube Rudolf haben sprengarbeitsabhängige und -unabhängige Bergschläge erkennen lassen und die registrierte Zahl der Ereignisse pro Zeiteinheit (die Autoren sprechen von Impulszahlen) zu erfolgreichen in situ Prognosen ausgenützt. In der Grube Stefanie brachte dieses Verfahren jedoch keine Ergebnisse (S̆IMÁNĚ et al. 1973). Auf Grund dieser Registrierungen wurde zusätzlich ein Zusammenhang zwischen Ereignishäufigkeit und Fernbeben untersucht (RAINER 1973).

Abb. 5 stellt für die genannten seismischen Ereignisse die 7-Tagessummen der Ereignisse und die 7-Tagessummen der Amplitudenquadratẹ (Energie) dar. Zusätzlich wurden auch für drei Tage und für einen Tag Berechnungen durchgefilhrt, die eine bessere zeitliche Auflösung gestatten. Es fällt auf, daß die Bergschlagaktivität in Bleiberg mit den Beben in Friaul und im Nahbereich korreliert. Das bedeutet, daß diese Gebiete offenbar dem gleichen Spanningsfeld angehören. Auch die historischen Starkbeben im Raum Villach und Norditalien dürften deshalb nicht getrennt betrachtet werden. Großtektonische Bruchlinien, die diese Gebiete verbinden, sind jedoch nicht bekannt. Es ist bemerkenswert, daß die Epizentrenverteilung auch nicht den Großbruchlinien folgt (GUTDEUTSCH und ARIC 1976).

Die seismische Aktivität Friauls wird durch längere Ruheperioden unterbrochen, wie z. B. die Ruheperiode vor dem 11. September 1976. Vorbeben leiten dann eine neue rege seismische Tätigkeit ein. Die Abb. 5a zeigt diese Effekte deutlicher, da hier die Anzahl der Ereignisse pro Tag logarithmisch dargestellt ist. Hieruber gibt es detaillierte Studien (siehe z. B. 1976 Friuli earthquakes and the antiseismic design of nuclear instellations Rome, Italy, 1977, Vol. I).

Die Untersuchung zeigt, daß Bebenschwärme in Friaul meistens von Bergschlăgen begleitet werden (z.B. am 18. 9. 1977). Manchmal scheinen Bergschläge (1.4.1979) nachfolgende Einzelereignisse in Friaul anzukündigen (z.B. am 22.4.1979), jedoch trifft dies nicht regelmaßig zu, wie z. B. die Bergschlagtătigkeit um den 10.12. 1978 beweist. Auf Grund aller dieser Fakten halten wir einen ursächlichen Zusammenhang zwischen der Seismizität Friauls und der Bergschlagtätigkeit in Bleiberg für sehr wahrscheinlich. Der Gesteinsverband im Bergbaurevier besitzt auf Grund der Abbautätigkeit durch Hohlraumbildung eine zeitlich veränderliche Festigkeit. Vieles spricht dafür, daß dieser Zustand in Verbindung mit der lokalen Tektonik dazu fuihrt, daß das Bergwerk auf geringe Änderungen des großtektonischen Spannungsfeldes wie ein empfindlicher Indikator mit Mikrobeben reagiert. Jedoch kann die für die Öffentlichkeit wichtige Frage, ob z. B. eine ansteigende Bergschlagtätigkeit in Bleiberg ein größeres Einzelbeben in diesem Raum ankündigt, noch nicht beantwortet werden. Umgekehrt ist es auf Grund des bisherigen Beobachtungszeitraumes auch noch nicht möglich, einen einzelnen Bergschlag als Folge eines Erdbebens vorauszusagen.

Abb. 5 oben: Häufigkeit der Typen B, C und D, Summen uber 7 Tage. unten: Amplitudenquadrate, Summen uber 7 Tage.

Abb. 5a: Logarithmus der Häufigkeitssummen uber 1 Tag.

4. Radonmessungen

Radon (${ }^{222} \mathrm{Rn}$) ist ein radioaktives Edelgas, das durch den Zerfall vom Radium (${ }^{226} \mathrm{Ra}$) entsteht. Radium ist als Folgeprodukt von Uran (${ }^{238} \mathrm{U}$) in den meisten Gesteinen der Erdkruste zumindest in kleinen Mengen vorhanden, so daß man in vielen Quellwässern Radon in meßbarer Konzentration findet. Gemäß der Dilatanztheorie (z. B. SCHOLZ, SYKES, AGGARWAL 1973) wäre vor größeren Beben ein Ansteigen der Radonkonzentration zu erwarten. Es hat sich jedoch gezeigt, daß Untersuchungen in dieser Hinsicht nur zum Teil die erhofften Ergebnisse gebracht haben (ULOMOV, MAVASHEV 1971, SULTANKHODJAEV et al. 1977). Um den Problemkreis möglicher Korrelationen zwischen der seismischen Tätigkeit und des Radongehaltes von Quellen genauer zu untersuchen, wurden an mehreren Quellen in Kärnten Apparaturen zur kontinuierlichen Überwachung der Radonkonzentration installiert. Die Konstruktion dieser Apparaturen ist bei FRIEDMANN, HERNEGGER (1978) beschrieben. Die Messung beruht auf der Registrierung des Ionisationsstromes einer luftgefullten Ionisationskammer. Es hat sich gezeigt, daß nur bei einer der von uns bisher untersuchten Quellen Schwankungen des Radongehaltes feststellbar sind. Diese Quelle befindet sich in Warmbad Villach in Kärnten (Österreich). Abb. 6 zeigt den Radongehalt des Quellwassers zwischen November 1977 und September 1979, wobei die Konzentration in Einheiten des gemessenen Stromes der Ionisationskammer angegeben ist. Als Richtwert zur Umrechnung in eine echte Konzentrationseinheit gilt $10 \mathrm{pA} \approx 0,45 \mathrm{nCi} / 1$ Wasser. Man erkennt deutlich kleine kurzperiodische schwankungen und größere langperiodische Änderungen des Radongehaltes. Außerdem ist eine deutliche Anomalie im Radongehalt zwischen Ende Jänner 1979 und September 1979 festzustellen.

Abb. 6: Radonkonzentration im Quellwasser vom Warmbad Villach.

Abb. 7: Darstellung der untersuchten physikalischen Parameter.

Da der Radongehalt sowohl von der Beimischung durch Oberflächenwasser als auch von der Löslichkeit, die eine Funktion von Temperatur und Druck ist, abhängt, liegt es nahe, vorerst diese Effekte möglichst getrennt zu studieren.

Die Unterlagen über Luftdruck und Niederschläge wurden von der Zentralanstalt für Meteorologie und Geodynamik Wien, die der Grundwassertemperatur vom Hydrographischen Dienst, Klagenfurt und Wien, zur Verfugung gestellt.

Aus technischen Grïnden konnte keine Messung der Quellwassertemperatur durchgefuhrt werden, so daß ein möglicher Einfluß der Quelltemperatur auf den Radongehalt nicht untersucht werden konnte.

Aus Abb. 7 wird ersichtlich, daß Schwankungen des Luftdruckes offenbar keinen wesentlichen Einfluß auf die Radonkonzentration ausuben. In der Abbildung ist auch eine Funktion (FRIEDMANN 1979)

dargestellt, die ein Maß für die kurzperiodischen Schwankungen des Radongehaltes ist. Diese Funktion zeigt Ähnlichkeiten mit dem Verlauf der Niederschlagstätigkeit. Weiters scheinen auch Zusammenhänge zwischen der Radon - Meßkurve und dem mittleren Verlauf des Grundwasserpegels zu bestehen. Um einen möglichen Zusammenhang der Konzentrationsschwankungen mit dem Erdbebengeschehen nachzuweisen, war es daher zunächst notwendig, Untersuchungen zur Hydrologie im Bereich der Thermalquelle durchzufuhren.

Abb. 8: Niederschlag, gemessene und theoretische Pegelschwankungen.

Abb. 9: Mittlere jährliche Pegelschwankung
a) gemessen,
b) theoretisch,
c) mittlerer wöchentlicher Niederschlag,
5. Zusammenhang zwischen Niederschlägen und Radongehalt der Thermalquelle

Der Zweck hydrologischer Untersuchungen im Bereich der Thermalquelle Villach war zunächst, Schwankungen der Rn - Konzentration, welche auf/meteorologische und hydrologische Vorgänge zurückgehen, zu erkennen und die Rn-Meßkurve zu reduzieren. Die verbleibenden Schwankungen des Radon - Pegels sollten auf einen Zusammenhang mit tektonischen Veränderungen hin geprift werden. Andererseits war auch vorgesehen, Schwankungen des Grundwasserspiegels im Bereich Villach auf ihre Ursache hin zu überprufen, nachdem bereits zahlreiche Beispiele von Pegelschwankungen in Verbindung mit Erdbeben bekannt sind (z.B. LEGETTE und TAYLOR 1935, RALEIGH et al. 1977).

Zunächst erschien es erforderlich, den Einfluß der Regenmengen auf die Pegelschwankungen zu erfassen. In einem Zeitintervall von sieben Wochen Ende 1978 (Abb. 8) wurde eine Übertragungsfunktion zwischen Regenfällen und Grundwasserschwankungen ermittelt. Die Faltung dieser Übertragungsfunktion mit der Zeitreihe der Niederschläge ergibt die theoretisch zu erwartenden Pegelschwankungen. In Abb. 8 sind diese stückweise in die Pegelkurve uber fünf Jahre (strichliert) eingezeichnet. Im wesentlichen sind offensichtlich die kurzperiodischen Pegeländerungen durch die Regenfälle gut erklärt. Abb. 9 zeigt den mittleren, jährlichen Verlauf des Grundwasserstandes sowie der Niederschläge (Mittel aus den Jahren 1974-1978). Wiederum wurde auf die Niederschläge (Abb. 9c) die Übertragungsfunktion angewendet. Die sich ergebende theoretische Pegelschwankung (Abb. 9b) kann natirlich den Pegelanstieg infolge der Schneeschmelze in Abb. 9a nicht wiedergeben. Aus diesem Grunde unterscheidet sich die tatsächlich gemessene von der theoretischen Pegelschwankung vor allem durch die verschobene Lage des Maximums.

Die Kurve der Radonkonzentration (Abb. 6) zeigt zunächst einen Gang von ca. einem Jahr. Ein ebensolcher Jahresgang wurde auch von KING (1978) im Radongehalt der Bodenluft in den USA festgestellt. Die Meßreihe von 25 Monaten ist aber noch nicht lang genug, um diesen Gang genauer zu bestimmen. Das geht insbesondere aus dem zeitlichen Abstand der beiden Extrema 78 und 79 hervor, der nicht 12 , sondem nur 11 Monate beträgt. Neben der Jahresperiode sind auch noch Variationen kleinerer Amplituden vorhanden, z. B. Anfang August 1978 und Anfang Juli 1979.

Abb. 10
oben: Jahresgänge der Radonkonzentration 1978 und 1979 (geglättet).
unten: Theoretische Pegelschwankung als Folge der Niederschläge (mittlerer jährlicher Verlauf) und wöchentliche Niederschläge.

Wenn man die durch Faltung bestimmte theoretische Pegelschwankung gegenüber der Radonkonzentration aufträgt, so findet man einen gewissen Gleichlauf, jedoch scheinen die Variationen des Radongehaltes denen der Pegelschwankungen um 1 bis 2 Monate vorauszueilen (Abb. 10, Pfeile). Darum muß angenommen werden, daß die gegenwărtigen Niederschläge den Radongehalt erst in ca. 11 Monaten beeinflussen. Abb. 10 soll diesen Sachverhalt klarer aufzeigen. Aus dem 5-jährigen Beobachtungszeitraum 1974-1978 ist der mittlere wöchentliche Niederschlag bestimmt worden (Abb. 10 unten). Dieser dient als Grundlage für die Berechnung der theoretischen Pegelschwankungen. Darüber sind die Radonkurven 1978 und 1979 gezeichnet. Man sieht deutlich eine Anzahl von kleinen Variationen der Rn - Kurven, die den theoretischen Pegelschwankungen entsprechen. Die 11 -monatige Zeitverzögerung der Rn-Schwankungen gegen die Pegelschwankungen ist auf Grund der geringen Wanderungsgeschwindigkeiten des Wassers im Untergrund verständlich. Es erscheint jedoch erstaunlich, daß selbst die kurzperiodischen Schwankungen über so lange Zeit hin so präzise ubertragen werden. Dies spricht dagegen, daß der Wassertransport vorwiegend durch Diffusion erfolgt.

Man erkennt aus Abb . 7, daß im Zeitraum der extremen Radonschwankungen (Sommermonate) auch die Niederschlagstätigkeit am größten war. Im Winterhalbjahr sind die Fluktuationen des Radongehaltes relativ klein. Hier erfolgt die Niederschlagstätigkeit vorwiegend in Form von Schnee, der nicht in den Boden eindringt. Er akkumuliert und dürfte deswegen zunăchst keinen Einfluß auf die Radonkonzentration der Quelle ausüben.

Es schien daher ginstig, eine Korrelation zwischen Erdbeben und Radongehalt gerade in diesem Zeitintervall der Wintermonate durchzufuhren. Das Ergebnis wird in Kapitel 7 aufgezeigt.

Bei all diesen Schlußfolgerungen muß in Betracht gezogen werden, daß die letzten Tage vor dem Wasseraustritt für die Radonkonzentration entscheidend sind, da die Halbwertzeit des Rn 3, 8 Tage beträgt.

6. Möglicher Einfluß der Gezeitenkräfte auf die Radonkonzentration

Besonders im Monat September 1978 waren periodische Konzentrationsschwankungen des $\mathrm{Rn}-\mathrm{Ge}$ haltes im Quellwasser zu beobachten (Abb, 10). Interessant ist in diesem Zusammenhang, daß diese Fluktuationen nicht dauernd aufueten, sondern vereinzelt, jeweils uber eine Zeit von etwa 2 bis 6 Wochen.

Die Amplitude der Fluktuationen ist gering. Unter der Arbeitshypothese, daß die Rn-Konzentration vom Spannungszustand des Krustengesteins abhängig sein könnte, wurde der Vergleich von Konzentration und Gezeitenbeschleunigungen untemommen. Es wurde dazu die Vertikalkomponente Z der gezeitenerregenden Beschleunigung herangezogen. Das Ergebnis zeigt Abb. 11.

Abb. 11: Vergleich zwischen Radonkonzentration und Gezeitenkräften.

Abb. 12: Vergleich der Frequenzspektren.

Aus der Abbildung wird ersichtlich, daß beide Schwankungen ähnliche Frequenzen aufweisen. Das Ergebnis einer Frequenzanalyse ist in Abb. 12 dargestellt. Die Gezeitenbeschleunigung besitzt große Amplituden im ganztägigen und halbtägigen Periodenbereich. Während im Halbtagsbereich keine Übereinstimmung zwischen Rn - Konzentration und Gezeiten besteht, liegt jedoch eine Übereinstimmung der Spektren im Ganztagsbereich. vor. Da aber viele meteorologische Parameter, wie z.B. die Temperatur, auch einen ganztägigen Gang zeigen, scheint die Periodizität der Rn - Konzentration ulberwiegend meteorologischen Ursprungs zu sein.
7. Zusammenhang zwischen Radon - Konzentration und Erdbeben

Beschränken wir uns auf einen Zeitraum, bei dem unerwünschte Effekte der Grundwasser - Pegelschwankungen nicht auftreten, kann man versuchen, Spitzen der Radonfluktuationsfunktion (F_{H}) mit seismischen Ereignissen zu korrelieren. Ein für diesen Zweck geeigneter Zeitraum ist etwa November 1977 bis Mai 1978. Abb. 13 zeigt oben die Radonfluktuationsfunktion F_{H} für diesen Zeitraum und unten die Energie des jeweils stärksten Bebens (Friaul) eines Tages in einer Entfernung zwischen 25 km und 100 km von der seismischen Station Bleiberg.

Abb. 13: Radonfluktuationsfunktion und Bebenenergie (Friaul).

Abb. 14: Kreuzkorrelation zwischen Radonfluktuation und Bebenenergie.

Die Korrelation zwischen der seismischen Energie der jeweils größten Einzelereignisse in einem Zeitintervall von 4 Tagen und der F_{H} wurde berechnet (Abb. 14). Obwohl der maximale Korrelationskoeffizient verhălmismäßig klein ist ($\sim 0,42$), zeigt die Korrelationsfunktion doch eine relativ ausgeprägte schmale Spitze in diesem Bereich. Das bedeutet, daß zwischen 6 und 21 Tagen nach einem größeren Beben in Friaul mit einer (zusätzlichen) Schwankung des Radongehaltes zu rechnen ist. Auch KING (1980) hat an längeren Beobachtungsreihen bemerkt, daß Änderungen der Radonkonzentration der Bodenluft nicht nur vor, sondern auch nach Erdbeben auftreten können. Dieser Zusammenhang kann eventuell dadurch erklärt werden, daß die Erschütterung der Kontaktfläche zwischen Quellwasser und radonemitierendem Gestein (etwa durch Fugenverbreiterung) geändert wird, ein Vorgang, der sich im unmittelbaren Herdgebiet in noch wesentlich größerem Maßstab abspielen dürfte.

Mit Ende Jänner 1979 wurde ein signifikanter Anstieg des Radongehaltes auf vorerst ca. den doppelten Wert beobachtet, wobei schließlich Ende Mai 1979 sogar ein dreifach so hoher Wert, wie er dem Jahresdurchschnitt 1978 entspricht, erreicht wurde (Abb. 6). Im darauffolgenden Zeitraum fiel die Radonkonzentration wieder etwas ab und pendelte sich etwa bei einem 2 bis 2,5-fachen des Normalwertes ein. Schließlich ging sie im September 1979 innerhalb kürzester Zeit wieder auf ihren Normalwert zurück. Parallel zu dem plötzlichen Anstieg Anfang 1979 wurde eine extreme Bergschlagtattigkeit im Bergwerkbereich der BBU registriert (Abb. 5). Dies könnte durch Spannungsänderungen im Beobachtungsgebiet interpretiert werden. In dem Zeitraum der extrem hohen Radonkonzentration fällt unter anderem auch das Starkbeben in Montenegro (15. April 1979) und das Beben in Friaul (18. April1979). Der plötzliche Riickgang der Radonkonzentration auf etwa den Normalwert fällt mit dem Beben vom 19. September 1979 in Mittelitalien zusammen. Ähnliche Beobachtungen sind sogar in Entfernungen von mehreren hundert Kilometern vom Epizentrum gemacht worden (RALEIGH et al. 1977. ALLEN et al. 1975).

Dem Fonds zur Förderung der wissenschaftlichen Forschung in Österreich, der Geophysika lischen Kommission bei der Österreichischen Akademie der Wissenschaften und dem Nationalkomitee des Internationalen Geodynamischen Projektes wird für die Finanzierung der Forschungsarbeiten gedankt. Für die Unterstützung unserer Arbeiten sind wir Frau Kommerzialrat H. LUKESCHTISCH, Warmbad Villach, der BBU, Herrn Ing. EBERHARD vom Hydrographischen Dienst Klagenfurt sowie dem Hydrographischen Dienst in Wien, und der Zentralanstalt für Meteorologie und Geodynamik zu Dank verpflichtet. Den Studienassistenten W. LENHARDT, S. PALLE, O. SVABIK und S. WIEDMANN danken wir für die Beabeitung des Datenmaterials.

Literatur

AMERICAN SEISMOLOGICAL DELEGATION: Earthquake Research in China EOS 56 (1975) p. 838.
ANDERLE, N.: Zur Schichtfolge und Tektonik des Dobratsch und seine Beziehungen zur Alpindinarischen Grenzzone. Jb. geol. B.-A., 94, Wien, 1950.

ARIC, K., G. DUMA und R. GUTDEUTSCH: Remarks about Magnitudes and Maximum Intensities of the Earthquakes in Friuli, 1976. Pageoph, Vol. 114, 1976.

BUBEN, I.: Die Ortung der Gebirgsschlagherde im Steinkohlenrevier bei Kladno. Freiberger Forschungshefte, Geophysik im Bergbau, Teil 1, 1967, S. 21-30.

CASTEN, U. und A. CETE: Untersuchungen zur induzierten Seismizităt im Bereich des Steinkohlenbergbaues des Ruhrgebietes. Gluck Auf Forschungshefte, 1980, Nr. 1.

DRIMMEL, J. , E. FIEGWEIL und G. LUKESCHITZ: Die Auswirkung der Friauler Beben in Österreich. Arbeiten aus der Zentralanstalt flir Met. u. Geodyn., Heft 38, Wien 1979.

FIEGWEIL, E.: Die Nahbebenserie der Friauler Beben vom 6. Mai und 15. September 1976. Arbeiten aus der Zentralanstalt, Heft 26, Wien 1977.

FRIEDMANN, H. und F. HERNEGGER: A method for continuous measurements of radon in water of springs for earthquake prediction. Geoph. Res. Letters Vol. 5, No. 7 (July 1978) p. 565.

FRIEDMANN, H.: Ein Programmpaket zur Analyse von Radonmeßdaten in Zusammenhang mit der Möglichkeit, aus solchen Meßergebnissen Erdbebenprognosen zu erstellen. Anz. d. Österr. Akad. d. Wiss. (1979 im Druck).

GUTDEUTSCH, R. und K. ARIC: Erdbeben im ostalpinen Raum. Arb. a. d. ZA.f. Met. u. Geodyn., Heft 19, Wien 1976.

HOLLER, H.: Gedanken zum Bau des Dobratsch in den ostlichen Gailtaler Alpen. Carinthia, 166 bzw. (II) 86, Klagenfurt 1976.

Eine Monographie des Bleiberger Bruches. Carinthia (II), Sonderheft 32, Klagenfurt 1974.

HURTIG, E., P. BORMANN, P. KNOLL und F. TAUBER: Seismological and geomechanical studies of a strong seismic event in a potash mine of the GDR: Implications for predicting mining tremors. Contribution of the Central Institute Physics of the Earth, Adac. Sc. GDR, 1978.

KING, Chi - Yu: Episodic Radon Changes in Subsurface Soil Gas along activ faults and possible relation to earthquakes. Bull. Seis. 1980 in press.

Radon Emanation in tectonically active areas. Natural Radiation Environment III, Houston, Texas, April 23-28, 1978.

KNOLL, P., K. THOMA und E. HURTIG: Gebirgsschlage und seismische Ereignisse in Bergbaugebieten. Vortrag wâhrend des XXVIII. Geomechanik Kolloquiums in Salzburg, 18.-19. Okt. 1979.

KOSTELKA, L.: Bemerkenswerte Gebirgsspannungserscheinungen im Bergbau Bleiberg - Kreuth, Geologie und Bauwesen 27, 82-88, Wien 1962 a.

LEGETTE, R. M. and G. H. TAYLOR: Earthquake instrumentally recorded in Artesian Wells. Bull. Seism. Soc. Am. . Vol. 25, 1935.

RAINER, H.: Gibt es Zusammenhange zwischen Erdbeben und Gebirgsschlaghaufungen im Bergbau Bleiberg. Rock Mech. 6, 91-100, 1974.

RALEIGH, B. and US Study Delegation: Prediction of the Haicheng Earthquake. EOS 58 (1977) p. 236.
RICHTER, C. F.:

SCHOLZ, C.H., C.R. SYKES and Y.P. AGGARWAL: Earthquake Prediction: A Physical Basis, Science Vol. 181, No. 4102 (31. Aug. 1973) p. 803.
S̆IMÁNĚ. J. , J. SKLENAR, H. HRIBERNIGG, L. KOSTELKA und H. RAINER: Seismoakustische Untersuchungen zur Vorhersage von Gebirgsschlagen. Berg- und Huttenmănn. Monatshefte 118, 375-384, Wien 1973.
SULTANKHODJAEV, A. N., I. G. TSCHERNOV and T. SAKIROV: Hydrogeoseismological Precursers of the Gasli Earthquake Proc. of the Uzb. SSR Academy of Sc. No. 7 (1977) p. 51.

TOPERCZER, M. und E. TRAPP: Ein Beitrag zur Erdbebengeographie Österreichs nebst Erdbebenkatalog, 1904-1948 und Chronik der Starkbeben. Mitt. d. Erdb. Komm. 65, Österr. Akademie d. Wissensch. , Wien, 1950.

TRAPP, E.:
Die Erdbeben Österreichs 1949-1960. Mitt. d. Erdbebenkomm. 67, Österr. Akad. d. Wiss., Wien 1961.
Die Erdbeben Österreichs 1961-1970. Mitt. d. Erdbebenkomm. 72, Österr. Akad. d. Wiss. . Wien 1972.
TSCHERNIK, E.: Über Gebirgsschläge in den Kămtner Blei-Zink Lagerstätten. Berg- und Huttenmänn. Jb. 80, 79-86, 117-136. Wien 1932. Gebirgsschläge im Ostalpinen Blei-Zink Bergbau. Abhandl. dt. Akad. Wiss. Berlin K1. VI, Bergbau etc. 1958, 2 a, 138-142, Berlin 1958 a.
ULOMOV, V.S. and B. Z. MAVASHEV: The Tashkent Earthquake of 26. April 1966. Akad. Nank. Uzbek. SSR FAN 188 (1971).
WIERZCHOWSKA, Z.: Untersuchungen von Gebirgsschlägen und Gebirgserschütterungen in Gornyslask unter Anwendung seismologischer Methoden. Freiberger Forschungshefte Geophysik im Bergbau, Teil 1. 1967, Seite 31-40.

```
Anschrift der Verfasser:
Dr. Kay ARIC.
Dr. Gerald DUMA und
Univ. Prof. Dr. Rudolf GUTDEUTSCH
Institut für Meteorologie und Geophysik der Universitat Wien
A-1090 Wien, Währingerstraße 17 und
A-1190 Wien, Hohe Warte 38
Dr. Harry FRIEDMANN und
Dr. Friedrich HERNEGGER
Institut für Radiumforschung und Kemphysik
der Österreichischen Akademie der Wissenschaften
A-1090 Wien, Boltzmanngasse 3
```

